If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+2x-86=0
a = 3; b = 2; c = -86;
Δ = b2-4ac
Δ = 22-4·3·(-86)
Δ = 1036
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1036}=\sqrt{4*259}=\sqrt{4}*\sqrt{259}=2\sqrt{259}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{259}}{2*3}=\frac{-2-2\sqrt{259}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{259}}{2*3}=\frac{-2+2\sqrt{259}}{6} $
| p3=1000 | | |x+3|-2=2 | | (m–7=23) | | 3x=5x+54 | | 14x-2x+3=3(5x+9)* | | 5x=3x-54 | | 3(6x)=15 | | 1.3x=-4 | | (2x+1)^2/3=18 | | z/3-4=8 | | 6.7x=49* | | 6,4-9,3b=25,3-3,9b | | (3x+22)=(5x-18) | | 0.5x+3=0.2(x-1) | | 5.25=w/50-25.75 | | 14y+15=0 | | −3x−11=3(x−2x)+12 | | 1/4d=16 | | 4x2-8x-96=0 | | 28/36=x/18 | | 10-(x+8)=3x+4x+1 | | -6,5=1,3/w | | B=4A=10B+A/2(Bx13)= | | 40x+0.05=0.15 | | 7=18x+9-5x | | 3x+x=5x-54 | | 6=-x+2 | | 3x+1=12.5=15 | | 4=6x+3-5x | | 4=12x+6-5x | | 3(2x-3)+15=36 | | 13p–3=49 |